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Periodic orbit basis for the quantum baker map
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A set of quantum states, dynamically related to the classical periodic orbits of a chaotic map, is used as a
basis in which the description of the eigenstates of its quantum version is greatly simplified. This set can be
improved with the inclusion of short time propagation along the stable and unstable manifolds of the periodic
orbits resulting in a construction similar to the scar functions of Vergini [J. Phys. A 33, 4709 (2000)]. The
average participation ratio is used to quantify the quality of the basis.
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I. INTRODUCTION

The question of the structure of the eigenfunctions of cha-
otic systems is intimately related to the construction of the
bases in which they can be expanded. In this respect a good
basis is one in which most eigenstates are given in terms of
a limited number of significant coefficients: A good measure
being, i.e., the average participation ratio in the given basis.
In the generic case of a basis unrelated to the Hamiltonian
(or the map) the states are mostly random and the average
participation ratio ((PR)) takes the random matrix value D/2
(for a Hilbert space of dimension D). At the other trivial
extreme the eigen basis gives a (PR) of unity. It is then clear
that a “good” basis must incorporate some dynamical ele-
ments from the system and at the same time be sufficiently
simple so as to be effectively constructed without resorting
to a full diagonalization.

In the case of the quantum baker’s map (QBM) Lakshmi-
narayan found that the eigenfunctions had a simple structure
(and significantly small participation ratio) when looked
upon in the Hadamard basis [1], thus exploiting a very spe-
cial property of the QBM. This line of research was followed
in [2], where it was found that the eigenfunctions of a large
family of quantizations of the QBM could be described in
terms of a very simple map, the essential baker, which for
special values of the Hilbert space dimension becomes the
Walsh quantized baker and can be explicitly constructed.
These features are very special and intimately related to the
binary symbolic dynamics of the map and are not easily
generalized to other systems.

A different approach with a potentially more general ap-
plicability, is based on the construction of states that “live”
on the unstable periodic orbits of the system. When used as a
basis these states realize in quantum mechanics the ideal of
Poincaré in the sense that “they (the periodic orbits) are the
only breach through we might try to penetrate into a strong-
hold hitherto reputed unassailable” [3]. The fact that some
eigenstates of chaotic systems show ‘“scars” of periodic or-
bits was established long ago by Heller [4], in counterpart to
earlier works in which the assumption was a uniform distri-
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bution on the energy shell according to the microcanonical
ensemble [5,6]. The scarring phenomena was studied in sev-
eral chaotic systems, in which linear and nonlinear theories
were developed [7-13].

The construction of scar functions in the QBM is based on
early studies in the stadium billiard [10,11,14]. The QBM
can be thought of as a pedagogical system to apply these
techniques since it has symbolic dynamics, stable (unstable)
manifold parallel to g (p) direction, a finite spectrum, and the
same small-valued Lyapunov exponent in the entire phase
space.

In this paper we provide a recipe to construct a set of scar
functions as an accurate basis to describe the QBM. This
basis has the propagation time of the quantum propagator as
parameter. When this time is of the order of the Heisenberg
time, the basis converges to the eigenbase of the map. For
short times, of the order of the Ehrenfest time, the basis
describes the spectrum of the QBM better than other known
bases [1,2].

In Sec. II, we briefly introduce the classical and quantum
version of the baker map. We construct the periodic orbit
modes and scar functions based on the evolution of the co-
herent states under the QBM. We give the rule with which
we choose a basis to describe the spectrum of the QBM for
any even-dimensional Hilbert space in Sec. III. Then, in Sec.
IV, we numerically test the basis, computing the average par-
ticipation ratio as a function of the propagation time. In Sec.
V we propose a method to approximate the scar functions by
homoclinic periodic orbit modes avoiding evolution in time,
and finally, we state the conclusions.

II. CLASSICAL AND QUANTUM EVOLUTION
A. Baker’s transformation

In this section we review some properties and notation of
the classical baker’s map that we will use in the quantum
states construction. The baker’s map B [15] is defined in the
unit square phase space (¢,p €[0,1)) as

q' =2q-24l,

. (p+12q)
o =224

2 b (1)
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where |.x] is the integer part of x. This map is area-preserving,
uniformly hyperbolic with Lyapunov exponent (\=1In 2), and
has stable foliation {g=cst} and unstable foliation {p=cst}.

The baker map has a simple action upon symbols in the
binary expansion of the coordinates

B

Plg)= e €€ —@'lg)=ei6 €,

()

where ¢g=37 27D and p=37" €2'.

The map has two symmetries:

(i) Parity (R): represented with the exchanges ¢— 1—¢
and p— 1—p together with the bitwise logical NOT upon
symbols (0=1).

(ii) Time reversal (7): represented with the exchange
p S q together with reversing the direction of the symbolic
flow.

The periodic orbits of the baker map of period L can be
represented by binary strings v of length L. We denote the
different trajectory points on a periodic orbit by (g;,p;) for
j=0,...,L—1 with (g;,p) =(qo,po)- The coordinates of the
first trajectory point on the periodic orbit can be obtained
explicitly in terms of the binary string

14

v ®

qo=vvv:- =

+

14
ol

Po= vty

(4)

where v is the integer value of the string ¥ which represents
a binary number, and »" is the string formed by all L bits of
v in reverse order. The other trajectory points can be easily
calculated by iterations of the map or by cyclic shifts of ».

B. Quantum baker map

The quantization of the map is performed in an even
D-dimensional Hilbert space with D=1/(27#). The QBM is
defined in terms of the discrete Fourier transform with anti-
symmetric boundary conditions as [16—18]

¢ 0
é:é};(c"” ) ) (5)
0 Gpp
GlGplk) = Lexp{—z%<1+l)<k+;)} (6)

The quantum baker map has the same symmetries as its
classical counterpart

[B,R]=0, (7)

(GBG™)*=B"! (8)

with parity represented by R=-G? and time reversal by T

=KG, where K is the complex conjugation operator.
The QBM spectrum is characterized by D eigenphases

and eigenstates I§|wj>=ei"’f|wj), with definite R symmetry
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(ﬁ|z,bj)= *|4f;)), and satisfying the time reversal requirement
Glun=lu)*.
II1. BASIS CONSTRUCTION
A. Periodic orbit modes

The first step in our construction is the definition of the
periodic orbit modes (POM), a superposition of coherent
states centered on the periodic points of an orbit. Similar
constructions have been employed before [7-11,19]. Our
definition is equivalent to the discrete-time version of the
tube functions defined by Vergini and Carlo in [10,11] for
continuous Hamiltonian flows.

The coherent state on the D-dimensional Hilbert space on
the torus with antiperiodic boundary conditions centered on
(g,p) [20] are represented in coordinate basis |j) as

o

2 . .
S g Dlej +m = pi2mDle rm-g2)p-im
K e (ej+m—q) 6l (ej+m—q/2)p~i m (9)

m=—%

where e;=(j+1/2)/D and K is a normalization factor which
converges to (2/D)"* for D> 1. The phase has been chosen
in such a way that parity and time reversal operators act on
them as

=[1-¢,1-p), (10)

(11)

without additional phases.

We now consider the collection of coherent states on the
periodic points |g;,p;), i=0,...,L—1 of a given primitive
orbit labeled by the binary string ». For chaotic systems the
points are isolated and therefore in the semiclassical limit
D — oo these states are approximately orthogonal. In the same
semiclassical limit they satisfy the approximate conditions

<Qj+l’pj+1|51j’pj> = 5j+1,j’

i27DS;

B]j+1 <qj+1’pj+1|B|qj’p]> = /—h)\’ (12)

where g;=qy, py=po; N is the Lyapunov exponent and
where the phase §; acquired by the coherent state in one step
of the map (with the present choice of phases for the coher-
ent states) is

g cpg L P, ]
S]—qu,pj—[ZqJ]( 5 + 2 + = 1 (13)

The L X L matrix éj,k in Eq. (12) is cyclic in the semiclassi-
cal limit and therefore it can be diagonalized by a discrete
Fourier transform. The eigenvalues are given by

2mAk

A e
(d4/Blh) = — : (14)
¢V| |¢V Vecosh A

where
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DS, +k
A = + (15)
The phase of the eigenvalues involves the classical action of
the orbit S, EL_I , and k is a Bohr-Sommerfeld-type pa-
rameter Wthh can be chosen from k=0, ...,L—1. Each pe-
riodic orbit then contributes L complex eigenvalues whose
phases are equally spaced and shifted from the origin by
DS, /L.
The eigenfunctions are the periodic orbit modes. They are
given explicitly by

|¢,) = ~2 GXp(—l

where 01-:27TDE{;OSZ. They are labeled by the binary symbol
of the periodic orbit and by the discrete index k (k
=0,...,L—1). Within the validity of the above approxima-
tions they are orthogonal. The fact that the eigenvalues are
complex reflects the instability of the orbit and characterizes
these states as long-lived resonances whose approximate
width on the unit circle is N. As this width is classical (inde-
pendent of D) these resonances overlap significantly with a
number of eigenstates AD/2 which is large in the semiclas-
sical limit.

It is convenient to impose the map symmetries to the
POM’s. The symmetries of the periodic orbits can be used
for this purpose. The PO of the classical baker map can be
classified in terms of their invariance under the classical
symmetries R and 7. We characterize this invariance by two
integers oy, o with the value ox=0 or o,=0 for invariant
orbits, while ox=1 or o7=1 if there are two different orbits
connected by the respective symmetry. As the action §,, is
invariant under these symmetries, the eigenvalues of the
POM constructed for each S, are degenerate with an associ-
ated subspace of dimension 2°72%. In these subspaces it is
possible to construct POM’s that have the same symmetries
as the eigenfunctions. Thus central orbits (ox=0;=0) with
v=v'=p give rise to L states, which automatically have the
required symmetries. Orbits with either o3=0, o7=1 or oy
=1, o7=0 give rise to 2L states, while nonsymmetric orbits
or=1, or=1 give rise to 4L states. Some examples illustrat-
ing this construction are

2m(DS,+k)j .
A — 10j>|61j,pj>, (16)

|q) )= |¢01> (17)

- 1R
Bhpey = )|¢001> (18)

— 1=x T
|DGior) = ( ) —=|Bbo1011)+ (19)

= Tt Pe + 1R
| DGoorort ) = u 2 )g|¢0001011> (20)
V2

where k=0,...,L—1.

Figure 1 shows the Husimi representation of two symme-
trized POM corresponding to #»=001 and »=00101. The bot-
tom part shows the distribution of the squared overlaps with
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FIG. 1. (Color online) Husimi representation of the periodic
orbit modes over 001 |CI~)(1)61§:_> (a) and over 00101 |<I~)361§3T) (b) for
D=120 in the unit square phase space ¢,p € [0,1). Square modulus
of the product of these states |( 1,&]|<I~>(1)01§=_)|2 (c) and |<L//J|CI~>(3)OI§3J1’>|2
(d) with eigenstates |¢;) with j=1,...,D ordered by increasing
eigenphases. The red dashed line represents the central phase A](‘)ml
and Aggio;-

the eigenstates as a function of the eigenphases. The central
dotted line is the Bohr-Sommerfeld energy in Eq. (15). It
should be clear that this construction can be justified for a
fixed periodic orbit, and for D— % because the periodic
points of chaotic systems are isolated. However, if we want
these quasimodes as a basis for a fixed value of D we need
also to consider orbits where the assumptions in Eq. (12) are
not satisfied. Instead of a diagonalization by means of an
explicit Fourier transform we must consider the generalized
eigenvalue problem det[{q;,p;|B|q;.p;)~Ng:.pi|q;-p;)]=0.
We explore this problem in connection to homoclinic orbits
in the Appendix.

B. Scar functions

In the preceding section we have seen that the POM are
quasienergy wave packets of constant classical width A. Nar-
rower wave packets can be constructed by Fourier transform-
ing the POM’s evolved for a limited time [7-11,13]. The
resulting states are the scar functions.

Consider the following operator which depends on the
time parameter ¢ and the phase &

ﬁt( &)= 2 oiel e‘12/2’2 Bl (21)

[=—00

When the Gaussian window is allowed to have infinite width
(r— o), this operator projects on the quasienergy eigenstates
while for finite ¢ the corresponding width will be Ae=2/1.
In general, we have
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FIG. 2. (Color online) Husimi representation of the scar functions, in the unit square phase space (¢,p €[0,1)), over »=001 with
different propagation times |@o="*=") (1=0) (a), |@57*="*=7) (1=2) (b), and |®f*="*=") (1=4) (c) for D=120. We plot the square root
of the Husimi function to enhance the structure on the manifolds. Square modulus of the product of these states \(z/fj | CDSSTI’R:_)P for t=0 (d),
1=2 (e), t=4 (f) with eigenstates |¢f;) with j=1,....D ordered by increasing eigenphases. The red dashed line represents the central phase

k=0
AOO] .

D 0

Ple)=2 > e el 2yl By )]

j:] |=—0

D
= E 5:(8 - ¢j)|l/{j><lﬁj s (22)
j=1

where &(g) is the Fourier transform of ¢ "2” When this
operator acts on a POM it sharpens its quasienergy width
while extending the wave packet in phase space along the
stable and unstable manifolds of the periodic orbit. A wave
function is thus created that interpolates between a simply
constructed but relatively unstable state and a true eigenstate
if the propagation time is of the order of the Heisenberg time.
The interesting region is of course when the propagation
time is of the order of the Ehrenfest time. We define the scar
functions as the short-time propagation (< Ehrenfest time
=log, D) of POM in » with the phase evaluated in s=Alf,
defined by Eq. (15),

1. 5
| Ptk = ;Pt(27TAI:,)|(DI:,>, (23)

where « is a normalization factor, and the POM is recovered
for 1=0 (|®0%)=|dk)). Notice that, for unstable periodic
orbits, the forward and backward propagation of wave pack-
ets on the periodic points lead to significant amplitude on the
stable and unstable manifolds of that orbit. It is then ex-
pected [10,11] that these scar functions will be structures
supported on these manifolds and having narrower overlaps
with definite quasienergy regions on the unit circle. In this

work we fix the phase ¢ to the Bohr-Sommerfeld values (A’,‘,)
and vary the time propagation t.

The Husimi representations of the scar functions over »
=001 for different evolution times (r=0,2,4), and their
products with QBM eigenstates are shown in Fig. 2. Note
that the coherent states in the Husimi representation spread
in the stable and unstable manifolds interfering between each
other. Note that the Ehrenfest time for D=120 is approxi-
mately tg,,~7.

TABLE 1. Periodic orbits used in basis construction of dimen-
sion Dy to describe the QBM spectrum of dimension D (where D
=D).

Dimension Periodic orbit added

D, L, v

2 1

4 2 01

10 3 001

22 4 0001; 0011

52 5 00001; 00011; 00101

106 6 000001; 000011; 000101; 000111; 001011

232 7 0000001; 0000011; 0000101; 0001001;
0000111; 0001011; 0001101; 0010011; 0010101

472 8 00000001; 00000011; 00000101; 00001001;

000001113 00001011; 00001101; 00010101;
00011001; 00010011; 00100101; 000011115
000101115 00011011; 00101011; 00101101
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FIG. 3. Overlap matrix, <¢j‘¢’,}k‘R’T> 2, between the eigenstates

of the QBM ordered by eigenphases and the scar functions con-
structed on the PO with L=<6, ordered by increasing phase A]f, for
D=100 (|;) on rows and |%"Enw'>5RT) on columns). The value of
the overlap is in grayscale from O (white) to 1 (black).

IV. NUMERICAL TEST OF THE BASIS

Scar function basis. The QBM can be simplified using
the scar functions as basis. In fact, it is useful to choose a
set of Dg nonorthogonal scar functions, which span the
D-dimensional Hilbert space, as an overcomplete basis of the
QBM. The election of the periodic orbits will determine the
basis. As we want to construct functions on short PO we give
two different rules to choose the PO of the basis which con-
verge to the same basis for long D.

(1) The first choice is to select the PO with the shortest
period which spans the Hilbert space. For example, for D
=100 we will have Dg=106 scar functions constructed over
PO with period up to L=6, and for D=140 we must include
PO with period L=7 and therefore Dg=232 (see Table I for
D<472).

(2) The other possible election of the PO could be, for a
given D, to choose Dg=2L€[D,2D) and the short PO la-
beled by binary strings of L digits.

In this work we will choose the shortest period basis, but
for long D limit both bases, are similar. The important fact is
that in both cases the maximum period involved grows as
log, D. Figure 3 shows the overlap matrix [(y;|®5“%") of
QBM cigenstates (D=100) ordered by eigenphases (|¢,), on
rows) and the scar function basis (Dg=106) (|®%En24RT)
on columns) ordered by phase value A’f,, with r=tg,/2.

PHYSICAL REVIEW E 78, 036221 (2008)

This result, besides restating the fact that scar functions
have narrow overlaps with eigenstates also shows that an
eigenstate can be pictured as a narrow superposition of scars.
Each of which is relatively simple to construct. For example,
in the case of D=102 one of the eigenstates of the QBM can
be represented by only one scar function of period L=3 with
a propagation time of f=tg,/2 with an accuracy of
(| D" =>R=*)| =0.87. The approximation of the eigen-
state can be improved adding another scar function of period
L=4. Therefore, an ansatz state constructed as

2,k=2,R= 2,k=2,R=
|(Dansatz> =C |(D(t)%h1r/ +> + CZ|(I)E)%}3/1 +> (24)

with ¢;=0.75 and ¢,=0.48¢7"!"7 has an accuracy of
1| D ansarz)| = 0.92. Figure 4 shows the Husimi functions of
the eigenstates and both scar functions considered in this
example.

The scar functions have superposition with a small num-
ber of eigenstates. This can be quantified in terms of the
average participation ratio defined as

1 D -1
(PR) = 52 ( |<¢j|<1>’;"*R’T>|4) : (25)
Jj=1

S L=l

where (PR) € [1,D). Notice that the random matrix theory
prediction for a generic basis is (PR)=D/2.

The (PR) decreases with the propagation time and con-
verges to 1 in the Heisenberg time limit as was expected.
However, the interesting region is for times of the order of
the Ehrenfest time. In Fig. 5(a) we show (PR) as a function
of propagation time for D=34,66,130. In Fig. 5(b) we also
show the fraction of scar functions which have PR less than
1.5 as a function of time. Notice that for D=130 and at ¢
= gy, the average number of eigenstates in a scar is about
three and 20% of the scar states have a (PR) less than 1.5
meaning that they are almost pure eigenstates.

The average participation ratio as a function of the dimen-
sion of the QBM is shown in Fig. 6 for the POM and the scar
functions with #=tgy, /2 and t=tg,,. For the limited range of
values available the (PR) seems to grow linearly with D but
with a slope significantly smaller than the D/2 random ma-
trix value. The reduction is similar (and more important) than
that obtained in [1,2].

@ | 0 | (©)

»
-

%
.,
N

FIG. 4. Husimi representation
in the unit square phase space
(g,p €[0,1)) of an eigenstate of
the QBM for D=102 (a), and its
most prominent scar function
components (b,c) as given in Eq.
. . (24).
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FIG. 5. (Color online) (a) Average participation ratio ((PR)) as a
function of the propagation time for D=34,66,130 in units of
Ehrenfest time. (b)%PR), s, fraction of scar functions which have
PR<1.5 in the QBM eigenstates basis.

V. SCAR APPROXIMATION BY HOMOCLINIC
PERIODIC ORBIT MODES

The construction of the POM basis is a simple analytical
formula only involving as classical input short periodic or-
bits. The scar function requires in addition the forward and
backwards propagation of the POM. In this paper for sim-
plicity this propagation was obtained exactly by a matrix
multiplication. It should be clear, however, that accurate
semiclassical expressions for this propagation could be avail-
able as long as the times involved remain bounded by the
Ehrenfest time. In this section we illustrate a different ap-
proach that replaces the need for this propagation by the

18 F —
<PR> POM (=0) ———

16 £ Scar (t=tgy, /2)

14 Scar (t=tgp) - ]

0 50 100 150 200 250 300 350

D

FIG. 6. (Color online) Average participation ratio ((PR)) as a
function of the dimension of the QBM for the POM and the scar
functions with t=tg,,/2 and t=tg,.
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FIG. 7. (Color online) Intensity 1,,E|(<I>§,Eh”2’k”|<b%k”>| between
the scar function over =01 with t=tg,,/2, and the homoclinic
POM over p=(01)*0 with s=3,5,7. k,,=0 is shown in (a) and &,
=1 in (b), where respective phases are drawn with solid black lines.
The dimension of the Hilbert space is D=128 and the products are
ordered by increasing phase (6) of u for the 2s+1 values of k,,.

construction of POM’s on long periodic orbits homoclinic to
short ones.

The homoclinic POM are simply the POM construction
described in Sec. IIT A over PO of the form pu=(w)*h with
period L,=sL,+Ly. This PO resembles the homoclinic tra-
jectories of v with the excursion & represented by the infinite
string - - ‘vwvhwvvy -+, and converges to it in the long s limit.
These orbits for large s accumulate near stable and unstable
manifolds of v and therefore can mimic the building up of
amplitude produced by the propagation.

A long POM with period L, will generate L, states with
phases A* 4+ uniformly spaced on the unit cucle The state
with the phase A’;;‘ closer to A% of the short » orbit will have
the largest overlap with the scar state. An example is shown
in Fig. 7 for the product between the scar function on
v=01 for both values of k, (k=0 on the left-hand side
and k=1 on the right-hand side) with t=tg, and the
homoclinic POM over u,=(v)’h for all values of k, (I,
= [(P'enrky D k#y|) as a function of the phase which takes
the discrete value A’ . In this case we choose the shortest
homoclinic excursion =0 and values of s=3,5,7. In this
example acceptable approximations (7,=0.9) are reached for
values of s no longer than 7. In Fig. 8 we compare the Hu-
simi representations of the scar function on »=01 with &
=1 and r=tg,/2 and its best approximation with the ho-
moclinic POM over pu,=(01)*0 with s=7. Note that the ho-
moclinic POM structure looks similar to the evolution in
time of the scar since it spreads the stable and unstable mani-
folds of the PO.

VI. CONCLUSIONS

We have shown that a set of states constructed on the
periodic orbits of the QBM provides a way of describing its
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FIG. 8. (a) Husimi representation in the unit square phase space
of the scar function |®F2*=1y on the PO »=01. (b) The Husimi
representation of the POM |(I)%k=]2) constructed on the homoclinic
orbit u=(01)%0 (with s=7) which approximates the scar function.
We plot the square root of the Husimi function to enhance the
structure on the manifolds. Those states are the scar function and
the POM approximation of the scar of Fig. 7, respectively, for D
=128.

eigenfunctions which significantly improves (in terms of the
average participation ratio) the description in terms of a ge-
neric basis. For the QBM this improvement is similar to that
obtained by Lakshminarayan using the Hadamard basis [1]
or by the essential baker map [2]. However, the method does
not use any special structure of the chaotic map and should
be generally applicable to other chaotic maps [21] as long as
the properties of a limited set of periodic orbits are known.

The construction is still far from a full semiclassical
analysis. The basis that we constructed is nonorthogonal and
requires us to consider each primitive orbit as noninteracting
with each other periodic orbit. The semiclassical calculation
of this interaction would be needed to calculate the ampli-
tudes that describe the eigenstates in terms of scar states.
Calculation of this type has been performed for the billiard
stadium [10,11,22], an hyperbolic Hamiltonian [23], and lin-
ear maps on the torus (“cat maps”) [21].

It is also important to mention that the aim here is to
reconstruct the unitary dynamics of the map in terms of pure
states constructed as interpretations of Gaussian packets with
complex coefficients derived from the classical action. A dif-
ferent construction based on incoherent superposition of den-
sities placed on periodic points would allow for a similar
reconstruction in terms of the Liouville dynamics. We post-
pone this aspect of the problem for future investigations.
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APPENDIX: POM DIAGONALIZATION

The periodic orbit modes (POM) constructed in Sec. IIT A
can also be seen in a different light. Consider the generalized
eigenvalue problem

det((y{B|v,) = 2(wlv)) = 0, (A1)
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FIG. 9. (Color online) (a) Real and imaginary part of the solu-
tions of the generalized eigenvalue problem for the PO »=01 and
the homoclinic orbit family u=(01)*0 for s=3,4,5,6,7. with D
=50. These solutions converge to the exact eigenvalue which lives
in the unit circle (solid line). Bottom: Husimi functions in the unit
square phase space of the states associated with the eigenvalues
marked with @ (u=01), + [=(01)70], and X (the exact eigen-
state of the map) [(b,c,d), respectively.

where | ;) are coherent states placed on M periodic points of
the map. The operator Zf” |v:){y,| can be considered as an
approximation to the resolution of wunity in the
D-dimensional Hilbert space, characteristic of coherent states
as long as M is large enough (=D) and the points cover
uniformly the phase space. This latter condition is satisfied
for chaotic maps on account of the Hannay—Ozorio de
Almeida sum rule [24]. Under this condition Eq. (A1) pro-
vides D exact eigenvalues and M-D zero eigenvalues [25].

POM are obtained with the two assumptions:

(a) Different primitive orbits do not interact.

(b) Equation (12) is satisfied.

With these conditions the eigenvalue problem is solved by
a simple Fourier transform involving the different points on
an orbit. The eigenfunctions are the POM’s of Eq. (16) and
the eigenvalues are complex and given by Eq. (14).

If we only retain the assumption that periodic orbits do
not interact we can refine the construction of POM by con-
sidering the limited diagonalization [Eq. (A1)] where now
|,y are the points on a primitive orbit (and its image under R
and T if necessary). This refinement is important for long
orbits of the type m=v'h and p=w|'hv}? which mimic ho-
moclinic and heteroclinic orbits and accumulate their points
close to short primitive orbits. For these orbits it is not cor-
rect to assume the coherent states as being even approxi-
mately orthogonal and therefore the generalized diagonaliza-

036221-7



LEONARDO ERMANN AND MARCOS SARACENO

tion is necessary. The eigenvalues divide in two sets. Some
converge rapidly to very small values, while there are always
some of them which converge to the unit circle.

The advantage of this construction is that the “good” ei-
genvalues are closer to the unit circle and therefore represent
modes that have a longer lifetime. Moreover, spurious eigen-
values that are produced by the superposition of many almost

PHYSICAL REVIEW E 78, 036221 (2008)

equal coherent states are rapidly eliminated. The disadvan-
tage is of course that the construction is not analytic and
requires a diagonalization.

We give an example for the family of orbits u,=v'h. We
have diagonalized Eq. (A1) for periodic points on the orbit
M, (s=3,4,5,6,7) and compare with the exact eigenstate of
the QBM for D=50 (Fig. 9).
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